Lagrange-mesh R -matrix method for inhomogeneous equations
نویسندگان
چکیده
منابع مشابه
Euler-lagrange Equations
. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...
متن کاملBernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملA Discontinuous Galerkin Moving Mesh Method for Hamilton-Jacobi Equations
where x = (x1, . . . , xd) ∈ IR , t > 0. HJ equations arise in many practical areas such as differential games, mathematical finance, image enhancement and front propagation. It is well known that solutions of (1) are Lipschitz continuous but derivatives can become discontinuous even if the initial data is smooth. There is a close relation between HJ equations and hyperbolic conservation laws. ...
متن کاملThe Euler – Lagrange Equations for Nonholonomic Systems
This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...
متن کاملA multi-mesh finite element method for Lagrange elements of arbitrary degree
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviors of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational run...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review C
سال: 2020
ISSN: 2469-9985,2469-9993
DOI: 10.1103/physrevc.102.014608